Second Order Linear Equations

October 13, 2016
(1) Second And Higher Order Linear Equations

- Second order linear equations

In first part of this chapter, we consider second order linear ordinary linear equations, i.e., a differential equation of the form

$$
L[y]=\frac{d^{2} y}{d t^{2}}+p(t) \frac{d y}{d t}+q(t) y=g(t)
$$

The above equation is said to be homogeneous if $g(t)=0$ and the equation

$$
L[y]=0
$$

is called the associated homogeneous equation.

Theorem (Existence and uniqueness of solution)

Let I be an open interval and $t_{o} \in I$. Let $p(t), q(t)$ and $g(t)$ be continuous functions on 1 . Then for any real numbers y_{0} and y_{0}^{\prime}, the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad t \in I, ~ \\
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{array},\right.
$$

has a unique solution on 1 .

Theorem (Principle of superposition)

If y_{1} and y_{2} are two solutions of the homogeneous equation

$$
L[y]=0
$$

then $c_{1} y_{1}+c_{2} y_{2}$ is also a solution for any constants c_{1} and c_{2}.
The principle of superposition implies that the solutions of a homogeneous equation form a vector space. This suggests us finding a basis for the solution space.

Definition

Two functions $u(t)$ and $v(t)$ are said to be linearly dependent if there exists constants k_{1} and k_{2}, not both zero, such that $k_{1} u(t)+k_{2} v(t)=0$ for all $t \in I$. They are said to be linearly independent if they are not linearly dependent.

Definition (Fundamental set of solutions)

We say that two solutions y_{1} and y_{2} form a fundamental set of solutions of the homogeneous equation $L[y]=0$ if they are linearly independent.

Definition (Wronskian)

Let y_{1} and y_{2} be two differentiable functions. Then we define the Wronskian (or Wronskian determinant) to be the function

$$
W(t)=W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t) .
$$

Theorem

Let $u(t)$ and $v(t)$ be two differentiable functions on open interval I. If $W(u, v)\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$, then u and v are linearly independent.

Proof.

Suppose $k_{1} u(t)+k_{2} v(t)=0$ for all $t \in I$ where k_{1}, k_{2} are constants. Then we have

$$
\left\{\begin{array}{c}
k_{1} u\left(t_{0}\right)+k_{2} v\left(t_{0}\right)=0 \\
k_{1} u^{\prime}\left(t_{0}\right)+k_{2} v^{\prime}\left(t_{0}\right)=0
\end{array}\right.
$$

In other words,

$$
\left(\begin{array}{cc}
u\left(t_{0}\right) & v\left(t_{0}\right) \\
u^{\prime}\left(t_{0}\right) & v^{\prime}\left(t_{0}\right.
\end{array}\right)\binom{k_{1}}{k_{2}}=\binom{0}{0} .
$$

Now the matrix

$$
\left(\begin{array}{cc}
u\left(t_{0}\right) & v\left(t_{0}\right) \\
u^{\prime}\left(t_{0}\right) & v^{\prime}\left(t_{0}\right)
\end{array}\right)
$$

is non-singular since its determinant $W(u, v)\left(t_{0}\right)$ is non-zero by the assumption. This implies that $k_{1}=k_{2}=0$. Therefore $u(t)$ and $v(t)$ are linearly independent.

Remark: The converse is false, e.g. $u(t)=t^{3}, v(t)=|t|^{3}$.

Example

$y_{1}(t)=e^{t}$ and $y_{2}(t)=e^{-2 t}$ form a fundamental set of solutions of

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

since $W\left(y_{1}, y_{2}\right)=e^{t}\left(-2 e^{-2 t}\right)-e^{t}\left(e^{-2 t}\right)=-3 e^{-t}$ is not identically zero.

Example

$y_{1}(t)=e^{t}$ and $y_{2}(t)=t e^{t}$ form a fundamental set of solutions of

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

since $W\left(y_{1}, y_{2}\right)=e^{t}\left(t e^{t}+e^{t}\right)-e^{t}\left(t e^{t}\right)=e^{2 t}$ is not identically zero.

Example

The functions $y_{1}(t)=3, y_{2}(t)=\cos ^{2} t$ and $y_{3}(t)=-2 \sin ^{2} t$ are linearly dependent since

$$
2(3)+(-6) \cos ^{2} t+3\left(-2 \sin ^{2} t\right)=0 .
$$

One may justify that the Wronskian

$$
\left.\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array} \right\rvert\,=0
$$

Example

Show that $y_{1}(t)=t^{1 / 2}$ and $y_{2}(t)=t^{-1}$ form a fundamental set of solutions of

$$
2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, \quad t>0
$$

Solution: It is easy to check that y_{1} and y_{2} are solutions to the equation. Now

$$
W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{cc}
t^{1 / 2} & t^{-1} \\
\frac{1}{2} t^{-1 / 2} & -t^{-2}
\end{array}\right|=-\frac{3}{2} t^{-3 / 2}
$$

is not identically zero. We conclude that y_{1} and y_{2} form a fundamental set of solutions of the equation.

Theorem (Abel's Theorem)

If y_{1} and y_{2} are solutions of the equation

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where p and q are continuous on an open interval I, then

$$
W\left(y_{1}, y_{2}\right)(t)=c \exp \left(-\int p(t) d t\right)
$$

where c is a constant that depends on y_{1} and y_{2}. Further, $W\left(y_{1}, y_{2}\right)(t)$ is either identically zero on I or never zero on I.

Proof.

Since y_{1} and y_{2} are solutions, we have

$$
\left\{\begin{array}{l}
y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}=0 \\
y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y_{2}=0 .
\end{array}\right.
$$

If we multiply the first equation by $-y_{2}$, multiply the second equation by y_{1} and add the resulting equations, we get

$$
\begin{aligned}
\left(y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}\right)+p(t)\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right) & =0 \\
W^{\prime}+p(t) W & =0
\end{aligned}
$$

which is a first-order linear and separable differential equation with solution

$$
W(t)=c \exp \left(-\int p(t) d t\right)
$$

where c is a constant. Since the value of the exponential function is never zero, $W\left(y_{1}, y_{2}\right)(t)$ is either identically zero on I (when $c=0$) or never zero on $I($ when $c \neq 0)$.

Theorem

Suppose y_{1} and y_{2} are solutions of

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where p and q are continuous on an open interval I. Then y_{1} and y_{2} are linearly independent if and only if $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$.

Proof.

The "if" part follows by Theorem 1.6. To prove the "only if' part, suppose $W\left(y_{1}, y_{2}\right)(t)=0$ for any $t \in I$. Take any $t_{0} \in I$, we have

$$
W\left(y_{1}, y_{2}\right)\left(t_{0}\right)=\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right|=0 .
$$

Then system of equations

$$
\left\{\begin{array}{l}
c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=0 \\
c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=0
\end{array},\right.
$$

has non-trivial solution for c_{1}, c_{2}. Now the function $c_{1} y_{1}+c_{2} y_{2}$ is a solution to the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, \quad t \in I \\
y\left(t_{0}\right)=0, \quad y^{\prime}\left(t_{0}\right)=0
\end{array}\right.
$$

This initial value problem has a solution $y(t) \equiv 0$ which is unique by Theorem 1.1. Thus $c_{1} y_{1}+c_{2} y_{2}$ is identically zero and therefore y_{1}, y_{2} are linearly dependent.

Theorem

Let y_{1} and y_{2} be solutions of

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, t \in I
$$

where p and q are continuous on an open interval I. Then $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$ if and only if every solution of the equation is of the form $c_{1} y_{1}+c_{2} y_{2}$ for some constants c_{1}, c_{2}.

proof

Suppose $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$. Let $y=y(t)$ be a solution of of $L[y]=0$ and write $y_{0}=y\left(t_{0}\right), y_{0}^{\prime}=y^{\prime}\left(t_{0}\right)$. Since $W\left(t_{0}\right) \neq 0$, there exists constants c_{1}, c_{2} such that

$$
\left(\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{y_{0}}{y_{0}^{\prime}} .
$$

Now both y and $c_{1} y_{1}+c_{2} y_{2}$ are solution to the initial problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, \quad t \in I, \\
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} .
\end{array}\right.
$$

Therefore $y=c_{1} y_{1}+c_{2} y_{2}$ by the uniqueness part of Theorem 1.1.

Proof

Suppose the general solution of $L[y]=0$ is $y=c_{1} y_{1}+c_{2} y_{2}$. Take any $t_{0} \in I$. Let u_{1} and u_{2} be solutions of $L[y]=0$ with initial values

$$
\left\{\begin{array} { l }
{ u _ { 1 } (t _ { 0 }) = 1 } \\
{ u _ { 1 } ^ { \prime } (t _ { 0 }) = 0 }
\end{array} \text { and } \left\{\begin{array}{l}
u_{2}\left(t_{0}\right)=0 \\
u_{2}^{\prime}\left(t_{0}\right)=1
\end{array} .\right.\right.
$$

The existence of u_{1} and u_{2} is guaranteed by Theorem 1.1. Thus exists constants $a_{11}, a_{12}, a_{21}, a_{22}$ such that

$$
\left\{\begin{array}{l}
u_{1}=a_{11} y_{1}+a_{21} y_{2} \\
u_{2}=a_{12} y_{1}+a_{22} y_{2}
\end{array}\right.
$$

In particular, we have

$$
\left\{\begin{array}{l}
1=u_{1}\left(t_{0}\right)=a_{11} y_{1}\left(t_{0}\right)+a_{21} y_{2}\left(t_{0}\right) \\
0=u_{2}\left(t_{0}\right)=a_{12} y_{1}\left(t_{0}\right)+a_{22} y_{2}\left(t_{0}\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
0=u_{1}^{\prime}\left(t_{0}\right)=a_{11} y_{1}^{\prime}\left(t_{0}\right)+a_{21} y_{2}^{\prime}\left(t_{0}\right) \\
1=u_{2}^{\prime}\left(t_{0}\right)=a_{12} y_{1}^{\prime}\left(t_{0}\right)+a_{22} y_{2}^{\prime}\left(t_{0}\right)
\end{array} .\right.
$$

In other words,

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) .
$$

Therefore the matrix

$$
\left(\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right)
$$

is non-singular and its determinant $W\left(y_{1}, y_{2}\right)\left(t_{0}\right)$ is non-zero.

Theorem

Let $L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y$, where $p(t)$ and $q(t)$ are continuous on an open interval I. The solution space of the homogeneous equation $L[y]=0, t \in I$ is of dimension two. Let y_{1} and y_{2} be two solutions of $L[y]=0$, then the following statements are equivalent.
(1) $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$.
(2) $W\left(y_{1}, y_{2}\right)(t) \neq 0$ for all $t \in I$.
(3) The functions y_{1} and y_{2} form a fundamental set of solutions, i.e., y_{1} and y_{2} are linearly independent.
(9) Every solution of the equation is of the form $c_{1} y_{1}+c_{2} y_{2}$ for some constants c_{1}, c_{2}, i.e., y_{1} and y_{2} span the solution space of $L[y]=0$.
(6) The functions y_{1} and y_{2} constitute a basis for the solution space of $L[y]=0$.

Proof

The only thing we need to prove is that there exists solutions with $W\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$. Take any $t_{0} \in I$. By Theorem 1.1, there exists solutions y_{1} and y_{2} to the homogeneous equation $L[y]=0$ with initial conditions $y_{1}\left(t_{0}\right)=1, y_{1}^{\prime}\left(t_{0}\right)=0$ and $y_{2}\left(t_{0}\right)=0, y_{2}^{\prime}\left(t_{0}\right)=1$ respectively. Then $W\left(y_{1}, y_{2}\right)\left(t_{0}\right)=\operatorname{det}(I)=1 \neq 0$ and we are done.

